
2025 LISN

Proposition de stage M1

Benchmark de code Avec adaptation de maillage

Les écoulements diphasiques, impliquant un liquide et un gaz, sont caractérisés par des variations importantes des propriétés physiques au passage de l'interface séparant ces deux milieux. La modélisation numérique de ces écoulements doit donc être capable de rendre compte de ces sauts de propriétés et de multiples schémas ont été élaborés pour résoudre ce problème.

Malgré la robustesse et la précision de ces schémas, il peut parfois être nécessaire d'avoir une résolution spatiale plus fine à proximité de ces discontinuités afin de mieux décrire celles-ci. Cette répartition des mailles dans l'espace, qui s'adapte à l'évolution temporelle de l'interface, s'appelle la technique *AMR* (*Adaptive Mesh Refinement*), est développée depuis de nombreuses années et est disponible dans de nombreux logiciels libres.

Une variante, *Multi-Resolution Analysis (MRA)*, reposant sur la décomposition en ondelette des champs permet de contrôle l'erreur associée aux opérations sur le maillage et s'est diffusée plus récemment.

L'objectif du stage est de comparer deux implémentations de ces techniques d'adaptation de maillage, avec les codes open-source Basilisk (développé à IJLRA) et Samurai (développé au CMAP et au LISN). On cherchera à quantifier la qualité de résolution de ces codes ainsi que leurs performances respectives.

Profil du candidat

- 1ère année de Master
- Connaissances en méthodes numériques et/ou en mécanique des fluides, avec des compétences en programmation

<u>Lieu</u>: Laboratoire LISN: Laboratoire Interdisciplinaire pour les Sciences du Numérique, Bâtiment 507, Orsay. www.lisn.upsaclay.fr

Durée: 3 mois

Travail en collaboration avec CMAP-Ecole Polytechnique (M. Massot), EM2C (C. Tenaud).

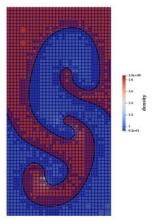


Figure 1: instabilité de Rayleigh-Taylor en MRA avec Samurai

