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Abstract. For some classes of cellular automata, we observe empiri-
cally a phenomenon of self-organization: starting from a random con-
figuration, regular strips separated by defects appear in the space-time
diagram. When there is no creation of defects, all defects have the same
direction after some time. In this article, we propose to formalise this phe-
nomenon. Starting from the notion of propagation of defect by a cellular
automaton formalized in [Piv07b,Piv07a], we show that, when iterating
the automaton on a random configuration, defects in one direction only
remain asymptotically.

1 Introduction

Cellular automata (CA) were introduced by J. von Neumann and S. Ulam as
simplified models of biological systems which can exhibit self-reproduction and
universal computation. A cellular automaton is a complex system defined by a
local rule which acts synchronously and uniformly on the configuration space.
These simple models have a wide variety of dynamical behaviours.

A first empirical classification was suggested by S. Wolfram [Wol84]. He in-
troduced four behaviour classes and we are interested in the fourth one: “The
fourth class of cellular automata exhibits still more complicated behaviour [...].
Even starting from disordered or random initial configurations, cellular automata
evolve to generate characteristic patterns. Such self-organizing behaviour occurs
by virtue of the irreversibility of cellular automaton evolution.” Indeed, for some
cellular automata, starting from a random configuration we observe the emer-
gence and the persistence of homogeneous regions separated by particles which
propagate and sometimes collide over time (see Fig. 1).

The persistence of these regions under the action of a CA was studied em-
pirically [Wol84,BNR91,HC97] and theoretically [Elo94]. M. Pivato proposed a
general formalism to describe this phenomenon: regions are characterized by a
subshift Σ and particles are defects in a configuration of Σ. In particular, he
develops some invariants to characterize the persistence of a defect [Piv07b] and
he describes the different dynamics of propagation of a defect [Piv07a].

To explain the emergence of a particular subshift when starting from a con-
figuration chosen randomly according to a measure µ, P. Kůrka and A. Maass



introduced the µ-limit set, which is the subshift whose forbidden patterns are
exactly those for which the probability to appear tends to zero as time tends
to infinity [KM00]. This set corresponds to the configurations observed when a
random configuration is iterated. The µ-limit set of an arbitrary CA is difficult
to compute: for example, it is undecidable to determine if it contains only one
configuration [BPT06]. In order to compute it in some given cases, P. Kůrka
suggests an approach based on particle weight function which assigns weights to
certain words [K̊03]. However, this method does not explain why some defects
remain in the µ-limit set.

In this article we combine the notions of defect of a subshift Σ and µ-limit
set to explain how structures can emerge from interactions of defects. More
precisely, we show that for a subshift Σ such that defects have good collision
properties, only defects in one particular direction can remain in the µ-limit set
for a given σ-ergodic measure µ. In the last section, we show that this theorem
can be applied to different cellular automata, thus explaining the behaviours
observed in the examples shown in Fig. 1.

Rule 184 (trafic rule) Rule 54

3-state cyclic CA 4-state cyclic CA

5-state cyclic CA One-sided captive such that f(ab)=f(ba)

Fig. 1. Space-time diagrams of some cellular automata starting from a random config-
uration



2 Definitions

2.1 Configurations and cellular automata

Let A be a finite alphabet. We consider the spaces A∗ = ∪n∈NA[0,n] of finite
words and AZ of bi-infinite configurations. For n ∈ N, u ∈ A∗, a ∈ AZ, we write
u @n a for a[n,n+|u|−1] = u and u @ a for ∃n, u @n a. The product topology on

AZ is metrizable with the Cantor metric on AZ defined by d(a, b) = 2−∆(a,b),
where ∆(a, b) = min{|z| : z ∈ Z and az 6= bz}. For u ∈ A∗ and m ∈ Z, we define
the cylinder [u]m = {a ∈ AZ : u @m a}, if m = 0 we denote [u] = [u]0. Cylinders
are clopen sets and a base for the Cantor topology. If U ⊆ A∗, we also note
[U ]m =

⋃
u∈U [u]m ⊆ AZ which is a borelian and [U ] = [U ]0.

The shift function σ : AZ → AZ is defined by (σ(a))v = av+1 for all v ∈ Z.
The language of a set Σ ⊆ AZ is L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u @ x}. Also, we
note Lr(Σ) = L(Σ) ∩ A[0,r−1]. A subset Σ ⊆ AZ is a subshift if it is closed for
Cantor topology and σ-invariant (i.e. σ(Σ) ⊆ Σ). In particular, Σ is a subshift
of finite type (SFT) if there is an order r > 0 such that Σ is entirely defined by
Lr(Σ), in the sense that Σ = {a ∈ AZ : ∀z ∈ Z, a[z,z+r−1] ∈ Lr(Σ)}. A subshift
is transitive if there exists an a ∈ Σ such that the orbit {σz(a)}z∈N is dense in
Σ. For a word u ∈ A∗, we note ∞u∞ the σ-periodic configuration of period |u|
such that (∞u∞)[0,|u|−1] = u.

A cellular automaton is a continuous function F : AZ → AZ which commutes
with σ. Equivalently [Hed69], F is defined by a local rule f : ABr → A such that
F (a)z = f(az+Br ) (r is the radius of the automaton) where Br = [−r, r]. We
study the action of F on AZ, and especially the values of (Fn(x))n∈N for some
initial configuration x, which we represent as a space-time diagram.

2.2 Measures and density of configuration

We consider probability measures on the borelians of AZ, noted M(AZ). For
some property P , if µ({x ∈ AZ : P (x)}) = 1, we say that P is true for µ-almost
all x.

A probability measure µ is σ-invariant if for any borelian set X, we have
µ(σ(X)) = µ(X). A probability measure µ is σ-ergodic if it is σ-invariant and
if for any σ-invariant borelian X ⊆ AZ (i.e. σ(X) ⊆ X) one has µ(X) = 0 or
1. We callMσ(AZ) andMerg

σ (AZ), respectively, the set of σ-invariant measures
and the set of σ-ergodic measures. Of course Merg

σ (AZ) ⊂Mσ(AZ) ⊂M(AZ).
For a configuration a ∈ AZ, we define the Dirac measure as δa(U) = 1 if

a ∈ U and 0 if not for any borelian U . We also define the Bernoulli measure µ
associated at a sequence (pa)a∈A (which verifies

∑
a∈A pa = 1) as µ([u]0) =

pu0
pu1
· · · pu|u|−1

. The action of F on a probability measure µ is Fµ(X) =

µ(F−1(X)) for any borelian X. Thus we obtain a function F : Mσ(AZ) →
Mσ(AZ), with F (Merg

σ (AZ)) ⊆Merg
σ (AZ).

Define the density of U ⊆ Z as dU = lim sup 1
2n+1 |U ∩ Bn|. For a set U ⊆ A∗

and a ∈ AZ denote U(a) = {n ∈ Z : ∃u ∈ U, u @n a} ⊆ Z the set of positions of
U in a. For µ ∈Merg

σ (AZ) and if U is a finite set of words, the Birkhoff ergodic



theorem [Wal00] applied to characteristic functions of cylinders can be restated
in terms of density:

For µ-almost all a ∈ AZ, dU (a) = dU(a) = lim sup
n→∞

1

2n+ 1
|U(a) ∩ Bn| = µ([U ]).

Moreover, we also have for any two open sets A and B:

1

N

N∑
k=0

µ(A ∩ σ−k(B)) −→
N→∞

µ(A) · µ(B)

2.3 Limit and µ-limit sets

The study of self-organization leads to an interest in the behaviour of the cellular
automaton when time tends to infinity. The set of configurations which appear
infinitely often is the limit set of F defined by Ω(F ) =

⋂∞
n=0 F

n(AZ). This set
can be viewed as the largest attractor: a closed set A is an attractor if there
exists an open set X such that F (X) ⊂ X and A =

⋂∞
n=0 F

n(X) [Hur90a].
However, these topological notions do not capture the empirical point of

view where the initial configuration is randomly chosen according to a measure
µ. That is why the notion of µ-attractor is introduced by [Hur90b]: for µ ∈
Mσ(AZ), a closed set A is a µ-attractor if A is an attractor of X and µ(X) > 0.
As discussed in [KM00] with many examples, this notion is not satisfactory
empirically and the authors introduced the notion of µ-limit set :

Λµ(F ) =

{
x ∈ AZ : ∀u @ x, Fnµ([u]0) 6−→

n→+∞
0

}
.

3 Defects

In this section, we recall the formalism introduced in [Piv07b,Piv07a] to describe
defects with respect to a subshift Σ, and we introduce a formalism to study their
dynamics under the action of a cellular automaton. More precisely, we focus our
study on interfaces and dislocations.

3.1 General definitions

The defect field of a ∈ AZ with respect to a subshift Σ is defined for all z ∈ Z
by FΣa (z) = max

{
r ∈ N : az+[−b r−1

2 c,b
r
2 c]
∈ Lr(Σ)

}
where the result is possibly

0 or ∞ if the set is empty or infinite. Intuitively, this function returns the size
of the largest admissible word centered on a cell. The set of defects DΣ(a) is the
set of local minima of FΣa . The successor of d ∈ DΣ(a) is sDΣ(a)(d) = min{z ∈
DΣ(a) : z > d}, and the interval [d+1, sDΣ(a)(d)] is a homogeneous region in the
sense that a[d+1,sDΣ(a)(d)]

∈ L(Σ). If there is no ambiguity, we just write D and

s(d).



If Σ is a SFT of order r, any defect d of a satisfies Fa(d) ≤ r, thus this notion
can be extended to finite words of size ≥ r except for the first b r−12 c and last

b r2c cells. Thus for a word u ∈ A[0,n−1], we have D(u) ⊆ [b r−12 c;n− 1− b r2c].
The examples given in Fig. 1 suggest that, in each case, defects can be clas-

sified according to their behaviour in two ways:

– Regions correspond to different subshifts and defects behave according to
their surrounding regions (interfaces - e.g. cyclic automaton);

– Regions correspond to the same periodic subshift and defects correspond to
a “phase transition” (dislocations - e.g. rule 184 automaton).

3.2 Interfaces

We now assume that the subshift Σ can be decomposed as a disjoint union
Σ1 t · · · t Σn of σ-transitive SFT. Since the different domains (Σk)k∈[1,n] are
disjoint SFTs, Σ is also an SFT, and there is some α > 0 such that u ∈ Lα(Σ)⇔
∃!k, u ∈ L(Σk): we say that u belongs to the domain k. Thus, for a configuration
a, we can associate a domain with each homogeneous region [d + 1; s(d)], and
only one choice is possible if s(d) > d+ α.

A domain signature is a continuous σ-invariant function κd : AZ → {1 . . . n}Z
that satisfies the following conditions:

– κd(a)z 6= κd(a)z+1 only if z ∈ D(a);
– if ∀z ∈ [d+ 1, s(d)], κd(a)z = k, then a[d+1,s(d)] ∈ L(Σk).

We can classify interfaces according to the domain signatures of the sur-
rounding regions: we write Dκdi,j(a) = {d ∈ D(a) : κd(a)d = i, κd(a)d+1 = j}. It is
possible to define those sets for finite words except for the first α− 1 and last α
cells.
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Fig. 2. Interfaces between monochromatic domains

3.3 Dislocations

Let Σ be a σ-transitive SFT of order r > 1. We say that Σ is P -periodic if there
exists a partition V1, . . . , VP of Lr−1(Σ) such that a1, . . . , ar ∈ Lr(Σ) if and only
if there exists i ∈ Z/PZ such that a1, . . . , ar−1 ∈ Vi and a2, . . . , ar ∈ Vi+1. The
period of Σ is the maximal P ∈ N such that Σ is P -periodic.

We thus associate to each a ∈ Σ its phase ϕ(a) ∈ Z/PZ such that a[0,r−2] ∈
Vϕ(a). Obviously, ϕ(σk(a)) = ϕ(a)+k. For a ∈ AZ, we say that the homogeneous
region [d+1, s(d)] is in phase k if ∃b ∈ Σ,ϕ(b) = k, a @d+1 b. If s(d) > d+ r−2,
the phase is unique and corresponds to a[d+1,d+r−1] ∈ Vk+d+1.

A phase signature κϕ : AZ → (Z/PZ)Z is a continuous function that satisfies:



– κϕ(a)z 6= κϕ(a)z+1 only if z ∈ D(a);
– if ∀z ∈ [d+ 1, s(d)], κϕ(a)z = k, then ∃b ∈ Σ,ϕ(b) = k and a[d+1,s(d)] @d+1 b
– κϕ(σ(a))z = κϕ(a)z + 1

When s(d) > d + r − 2, the second condition is equivalent to κϕ(a)z =
ϕ(a[d+1,d+r−1])+d+1 and shows that the phase signature is defined locally. Since
we want our classification of defects to be σ-invariant, and considering the last
condition, we define Dκϕi,j (a) = {d ∈ D(a) : κϕ(a)d+d = i, κϕ(a)d+1 +d+ 1 = j}.
These sets can be extended to defects in finite words except for the first r − 2
and last r − 1 cells.
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Fig. 3. Dislocations in the checkerboard subshift

3.4 Dynamics

We now consider the general case: assume thatΣ can be decomposed into disjoint
transitive SFTs Σ1 t · · · tΣn of respective periods P1 . . . Pn (possibly 1). More-
over, we suppose that theΣi are F -invariant to give sense to the notion of dynam-
ics of defects. κ = (κd, κϕ) : AZ → SZ, where S = {(i, x) : i ∈ [1;n], x ∈ Z/PiZ}
is a generalized signature if κd and κϕ respect the conditions of sections 3.2
and 3.3, respectively. We classify the defects according to the signature of the
surrounding phases D =

⋃
s1,s2∈S Ds1,s2 and there is some α such that we can

extend this classification to finite words except for the first and last α cells.
To describe the dynamics of defects, we study the evolution from D(a) to

D(F (a)) for a ∈ AZ. An interpretation of the action of F on a configuration
a ∈ AZ is a function ψa : D(a)→ I(D(F (a))), where I(U) is the set of intervals
of U, that satisfies:

Locality ∀d ∈ D(a),∀d′ ∈ ψa(d), |d′ − d| ≤ r;
Growth If d1 < d2 ∈ D(a), then ψa(d1) = ψa(d2) or max(ψa(d1)) < min(ψa(d2))

(where max ∅ = −∞ and min ∅ =∞).
Surjectivity D(F (a)) =

⋃
d∈D(a) ψa(d).

a

F (a)

. . .

. . .

ψa

∈ Ddis ∈ Dcol ∈ Dcol ∈ Ddis

∅

. . .

. . .

Fig. 4. An interpretation for the 3-state cyclic automaton



Equivalently, an interpretation is a decomposition of D(a) and D(F (a)) into
disjoint “increasing” intervals Ik and I ′k (k ∈ Z) of size ≤ 2r + 1, satisfying
locality (we have ψa(Ik) = I ′k). We distinguish different situations:

HH
HHH|Ik|
|I ′k| 1 > 1 0

1 displacement explosion (destructive)
> 1 collision collision collision

Thus, we decompose D(a) into Ddis(a) t Dcol(a) t Dexpl(a). If we have a set
of interpretations (ψa)a∈AZ , we consider the iterated interpretation ψ2

a : d 7→⋃
d′∈ψa(d) ψF (a)(d

′), which is an interpretation for F 2, and it extends to n > 2.

An interpretation ψa is coalescent if it contains only displacements (|Ik| =
|I ′k| = 1) and decreasing collisions (|Ik| > |I ′k|). In this case, a defect d ∈ Ds1,s2(a)
has speed (p, q) ∈ Z×N∗ if ∀k < q, ψka(d) ⊆ Ddis(F k(a)) and ψqa(d) = {d+ p} ⊆
Ds1,s2(F k(a)). An interpretation ψa respects a velocity function V : S2 → Z×N∗
if for any s1, s2 ∈ S and any d ∈ Ds1,s2(a), writing V (s1, s2) = p

q , either ψka(d) ⊆
Dcol(F k(a)) for some k < q, or d has speed V (s1, s2). The order of a velocity
function is the least common multiple of the q appearing in the image of V .

4 A step towards self-organization

Proposition 1. Let F be a CA, Σ = Σ1 t · · · t Σn a decomposition into F -
invariant SFTs, κ a signature, a ∈ AZ and ψa a coalescent interpretation. Then,

1. dD(F (a)) ≤ dD(a)− 1
2r+1dDcol(a);

2. if ψa respects V of order q, dDs1,s2 (F q(a)) ≤ dDs1,s2 (a)+
∑q
k=0 dDcol(F

k(a)).

Proof (of 1). By surjectivity and locality,

∀n ∈ N,D(F (a)) ∩ Bn ⊆ ψa(D(a) ∩ Bn+r).

Besides, |ψa(Ddis(a) ∩ Bn+r)| = |Ddis(a) ∩ Bn+r|, and |ψa(Dcol(a) ∩ Bn+r)| ≤
2r

2r+1 |ψ
−1
a (ψa(Dcol(a) ∩ Bn))| ≤ 2r

2r+1 |Dcol(a) ∩ Bn+2r|.
Since the automaton is coalescent, there is no defect in explosion. Therefore,

we have ∀n ∈ N, |D(F (a)) ∩ Bn+r| ≤ |Ddis(a) ∩ Bn+r| + 2r
2r+1 |Dcol(a) ∩ Bn+2r|,

and we conclude by passing to the upper limit. ut

Proof (of 2). We only prove the case q=1. Again,

∀n ∈ N,Ds1,s2(F (a)) ∩ Bn ⊆ ψa(D(a) ∩ Bn+r).

If d ∈ Ddis(a) and ψa(d) ∈ Ds1,s2(F (a)), we have d ∈ Ds1,s2(a) since ψa respects
V . Since D(a) = Ddis t Dcol, we conclude by passing to the upper limit. ut



Theorem 1 (Main result). Let F be a CA, Σ = Σ1 t · · · t Σn a decompo-
sition into σ-transitive F -invariant SFTs, κ a signature and (ψa)a∈AZ a set of
coalescent interpretations that respect a velocity function V .

Then for all µ ∈Merg
σ (AZ), there is a speed v ∈ Q such that

∀s1, s2 ∈ S,∀a ∈ Λµ(F ),Ds1,s2(a) 6= ∅ ⇒ V (s1, s2) = (p, q) with
p

q
= v.

We only prove the result for velocity functions of order 1; the result can be
easily extended by considering F q. We note V (s1, s2) = p instead of (p, 1). Let
α be the order of Σ and κ a signature, we introduce the following sets of words:

Is1,s2 = {u ∈ A2α+1 : α+ 1 ∈ Ds1,s2(u)}
Js1,s2,s3,s4(n) = {u ∈ An+2α+1 : α+ 1 ∈ Ds1,s2(u), n+ α+ 1 ∈ Ds3,s4(u)}

I =
⋃

s1,s2∈S
Is1,s2

It is obvious that for a ∈ AZ, for all s1, s2 ∈ S, dIs1,s2 (a) = dDs1,s2 (a) (recall that
U is the set of positions of U).

Lemma 1. Under the previous assumptions, let si ∈ S such that V (s1, s2) >
V (s3, s4). Then:

∀a ∈ AZ,∀n ∈ N, dD(Fn(a)) ≤ dD(a)− 1

4r + 2
dJs1,s2,s3,s4 (n)(a).

Proof. For a ∈ AZ, we proceed by induction on n.
• Initialization (n = 1): let x ∈ Js1,s2,s3,s4(1), that is z = x+α+1 ∈ Ds1,s2(a)

and z + 1 ∈ Ds3,s4(a).
Assume that z, z + 1 ∈ Ddis(a): then ψa(z) = z + V (s1, s2) ≥ ψa(z + 1) =

z + 1 + V (s3, s4), which is a contradiction with the growth property. Therefore,
either z or z + 1 is in collision, and dDcol(a) ≥ 1

2dJs1,s2,s3,s4 (1)(a). We conclude
by Proposition 1 (1).
• Heredity (n > 1): we assume the lemma is true for all k < n, and we consider

x ∈ Js1,s2,s3,s4(n), that is z = x+ α+ 1 ∈ Ds1,s2(a) and z + n ∈ Ds3,s4(a).
Assume that z, z + n ∈ Ddis(a): then ψa(z) = z + V (s1, s2) and ψa(z + n) =

z + n + V (s3, s4), and so x + V (s1, s2) ∈ Js1,s2,s3,s4(k)(F (a)) where k = n −
V (s1, s2) + V (s3, s4) < n. We conclude that z ∈ Dcol(a) or z + n ∈ Dcol(a) or
z, z + n ∈ Ddis(a) and x+ V (s1, s2) ∈ Js1,s2,s3,s4(k)(F (a)).

Therefore, we have dJs1,s2,s3,s4 (n)(a) ≤ 2dDcol(a) + dJs1,s2,s3,s4 (k)(F (a)).
If we apply the induction hypothesis,

dD(F k+1(a)) ≤ dD(F (a))− 1

4r + 2
dJs1,s2,s3,s4 (k)(F (a))

≤ dD(a)− 1

2
dDcol(a)− 1

4r + 2
dJs1,s2,s3,s4 (k)(F (a))

≤ dD(a)− 1

4r + 2
dJs1,s2,s3,s4 (k)(a)

Since dD(Fn(a)) ≤ dD(F k+1(a)) (Proposition 1 (1)), we conclude. ut



Proof (of Theorem 1). By Birkhoff’s theorem, we have for almost all a ∈ AZ, Fnµ([I]) =
dD(Fn(a)). By prop. 1 (1), (Fnµ([I]))n∈N is decreasing and has a limit d∞.

First step. Assume ∃si ∈ S, V (s1, s2) > V (s3, s4) and Fnµ([Is1,s2 ])·Fnµ([Is3,s4 ]) 6→
0; let ε > 0 such that ∀n0,∃n ≥ n0, Fnµ([Is1,s2 ]) · Fnµ([Is3,s4 ]) > ε.

Consider n large enough so that (Fnµ([I]))− d∞ < ε
8r+4 and Fnµ([Is1,s2 ]) ·

Fnµ([Is3,s4 ]) > ε. Since Fnµ ∈Merg
σ (AZ), we have:

1

N

N∑
k=0

Fnµ([Is1,s2 ] ∩ σk([Is3,s4 ])) −→
N→∞

Fnµ([Is1,s2 ]) · Fnµ([Is3,s4 ])

1

N

N∑
k=0

Fnµ([Js1,s2,s3,s4(k)]) −→
N→∞

Fnµ([Is1,s2 ]) · Fnµ([Is3,s4 ])

We can choose N large enough so that 1
N

∑N
k=0 F

nµ([Js1,s2,s3,s4(k)]) > ε
2 , so we

have Fnµ([Js1,s2,s3,s4(k0)]) > ε
2 for some k0.

By the preliminary lemma, we have:

∀a ∈ AZ, dD(Fn+k0(a)) ≤ dD(Fn(a))− 1

4r + 2
dJs1,s2,s3,s4 (k0)(F

n(a))

Fn+k0µ([I]) ≤ Fnµ([I])− ε

8r + 4

Which is in contradiction with Fnµ([I])− d∞ < ε
8r+4 .

Second step. Assume ∃si ∈ S such that V (s1, s2) > V (s3, s4) and Fnµ([Is1,s2 ]) 6→
0, Fnµ([Is3,s4 ]) 6→ 0. Since Fnµ([Is1,s2 ]) ·Fnµ([Is3,s4 ])→ 0, 0 is an accumulation
point of at least one of the sequences. Let ε > 0: w.l.o.g, we can choose n large
enough so that Fnµ([I])− d∞ < ε

4r+2 and Fnµ([Is1,s2 ]) ≤ ε
2 .

By applying iteratively proposition 1 (1) and (2), we have

∀a ∈ AZ,∀k ∈ N, dDs1,s2 (F k(a))− dDs1,s2 (a) ≤ (2r + 1) ·
(
dD(a)− dD(F k(a))

)
∀k ∈ N, F kµ([Is1,s2 ])− µ([Is1,s2 ]) ≤ (2r + 1) ·

(
µ([I])− F kµ([I])

)
By applying this to the measure Fnµ, we have:

∀k ∈ N, Fn+kµ([Is1,s2 ]) ≤ ε

2
+
ε

2

From which we deduce Fnµ([Is1,s2 ]) −→
n→∞

0, a contradiction.

Summary : For all s1, s2, s3, s4 such that V (s1, s2) 6= V (s3, s4), Fnµ([Is1,s2 ])→
0 or Fnµ([Is3,s4 ])→ 0. ut

5 Applications

5.1 n-state cyclic automaton

The n-state cyclic automaton is a particular captive cellular automaton defined
on the alphabet A = Z/nZ by the local rule

f(ai−1, ai, ai+1) =

{
ai + 1 if ai−1 = ai + 1 or ai+1 = ai + 1
ai otherwise



This automaton was introduced by [Fis90]. In this paper, the author shows
that for all Bernoulli measure µ, the set [i]0 (for i ∈ A) is a µ-attractor iff
n ≥ 5. Simulations starting from a random configuration suggest the following:
for n = 3 or 4, monochromatic regions keep increasing in size; for n ≥ 5, we
observe the convergence to a fixed point where small regions are delimited by
vertical lines. We are going to apply the main result to explain this observation.

We consider the decomposition Σ =
⊔
i∈AΣi where Σi = {∞i∞} of periods

Pi = 1 (no dislocations). Here, κd(a, z) = az and since κϕ = 1, we write κ(a, z) =
i for (i, 1). Defects are exactly transitions between colors, and we define the
velocity function as V (i+ 1, i) = (1, 1), V (i, i+ 1) = (−1, 1) and V (i, j) = (0, 1)
for i, j ∈ A with i+ 1 6= j 6= i− 1.

For any a ∈ AZ, we define Dk(a) =
⋃
V (i,j)=(k,1) Di,j(a). We also define for

any a ∈ AZ the function ψa by:

∀d ∈ Dk, ψa(d) =

{
∅ if ∃d′ ∈ Dk′ , sign(d− d′) 6= sign(d+ k − (d′ + k′))

{d+ k} otherwise

This interpretation corresponds to the behaviour of defects as observed in
simulations. It is straightforward to prove that it is well-defined (that is, it maps
a defect to a interval of defects) and that it satisfies the properties of locality,
growth and surjectivity. Since no image interval has size bigger than 1, it is
coalescent and respects the velocity function V . By applying the main result,
we show that for all µ ∈ Merg

σ (AZ), defects in only one direction remain in the
µ-limit set, that is ∃k ∈ {−1, 0, 1},∀a ∈ Λµ(F ),D(a) = Dk(a).

In particular, for any Bernoulli measure µ, if we consider the “mirror” appli-
cation γ((ai)) = (a−i), we have µ(γ([u])) = µ([u−1]) = µ([u]), where u1 . . . u

−1
n =

un . . . u1. But d ∈ D1(a) ⇔ −d ∈ D−1(γ(a)), and conversely; since this is true
for any F kµ, one has D1(a) = D−1(a) = ∅ for all a ∈ Λµ(F ). We deduce the
following properties of Λµ for each n-cyclic cellular automaton:

– If n = 3, there is no defect of speed 0. Therefore, one has D(a) = ∅ for
all a ∈ Λµ(F ), which means that Λµ(F ) = Σ is a set of monochromatic
configurations.

– If n = 4, the result of [Fis90] shows that [i]0 cannot be a µ-attractor for all
i. Thus one has D0(a) = ∅ for all a ∈ Λµ(F ), and Λµ(F ) = Σ is a set of
monochromatic configurations.

– If n ≥ 5, the result of [Fis90] shows that [i]0 is a µ-attractor for all i. Thus
for some a ∈ Λµ(F ) one has D(a) = D0(a) 6= ∅. This means that they contain
homogeneous regions separated by vertical lines.

5.2 Automaton #184

On the #184 “traffic” cellular automaton, we consider the defects according
to Σ = {∞(01)∞,∞(10)∞} (checkerboard pattern) with P = 2 (no interfaces).
Since κd = 1, we write κ(a, z) = i for (1, i). If we define the phases ϕ(∞(01)∞) =
0 and ϕ(∞(10)∞) = 1, we can see that κ is unambiguous and that κ(a, z) = 0 if



az = z mod 2, 1 otherwise. We define the velocity function as V (0, 0) = (1, 1)
and V (1, 1) = (−1, 1) (this corresponds to {��} and {��}, respectively).

For any a ∈ AZ, we define ψa by

∀d ∈ D0,0, ψa(d) =

{
∅ if d+ 2 ∈ D1,1

{d+ 1} otherwise

And symetrically for d ∈ D1,1(a). Similarly, we can check that this interpretation
is well-defined, respects the properties of locality, surjectivity and growth, is co-
alescent and respects the velocity function V . By applying the previous theorem,
we have for all µ ∈ Merg

σ (AZ) either D0,0(a) = ∅ (checkerboard and monochro-
matic black patterns) or D1,1(a) = ∅ (checkerboard and monochromatic white
patterns).

In particular, for the uniform Bernoulli measure µ, we consider the applica-
tion γ′((ai)) = (1 − a−i), and we can see that µ(γ′([u])) = µ([u−1]) = µ([u]),
where u1 . . . un = (1− u1) . . . (1− un). But d ∈ D0,0(a)⇔ −d ∈ D1,1(γ′(a)), and
conversely; therefore, for all a ∈ Λµ(F ), D0,0(a) = D1,1(a) = ∅. We deduce that
Λµ(F ) is the checkerboard subshift and by σ-invariance, (Fnµ) admits a single
accumulation point 1

2δ∞01∞ + 1
2δ∞10∞ .

5.3 Captive one sided cellular automata

Now consider a captive cellular automaton F : AZ → AZ of neighborhood [0; 1],
which means that the local rule f : A[0;1] → A verifies f(a0a1) ∈ {a0, a1}.
Captive cellular automata were introduced in [The04] and have some interesting
algebraic propeties.

We consider the decomposition Σ =
⊔
i∈AΣi where Σi = {∞i∞} of periods

Pi = 1 (no dislocations). We define the velocity function as V (i, j) = (−1, 1) if
f(ij) = j and V (i, j) = (0, 1) if f(ij) = i, and we define D−1 and D0 as in 5.1.
For all a ∈ AZ, we define:

∀d ∈ D−1(a), ψa(d) =

{
∅ if d− 1 ∈ D0

{d− 1} otherwise

and symetrically if d ∈ D0. As in the two previous examples, we can check that
this is well-defined and respects the properties of locality, growth, surjectivity,
coalescence and the velocity function.

Thus, for any σ-ergodic measure µ, Λµ(F ) contains defects in one direction
only. If moreover, for all a, b ∈ A, the local rule verifies f(ab) = f(ba) and µ
verifies µ([ab]) = µ([ba]) (e.g. Bernoulli measures), we have Λµ(F ) = Σ.

6 Conclusion

In this article we have presented a formalism to link the notion of defect with
respect to a subshift Σ introduced by M. Pivato and the emergence of homo-
geneous regions separated by defects when we iterate a random configuration.



Under some assumptions on the collisions of defects, we proved the only defects
that possibly remain in the µ-limit set all have the same direction. This explains
the behaviour observed in simulations for large classes of cellular automata.
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