ParSys

Parallel Systems- ParSys

The ParSys team is specialized in high performance computing and the theoretical and implementation aspects of distributed algorithms.

Research Themes

The team’s activity also involves the use of state-of-the-art parallel architectures to achieve optimal performance of codes developed for future exascale platforms. In addition, drawing inspiration from natural, efficient and robust phenomena, the team studies natural distributed algorithms to design efficient solutions for emerging networks, and even to develop robust distributed circuits in bacterial cell consortia, for computational or medical purposes (biological computers, smart drugs, etc.).
The main challenges concerning the algorithms studied in the ParSys team are: performance optimization, scaling and load balancing, fault tolerance and energy saving.
The applications (ranging from scientific computing, quantum computing and data analysis to network protocols and microbiological circuits) meet essential industrial or scientific needs and are the subject of industrial cooperation with ATOS-Bull, Total, and EdF, among others.

Coordination

Last publications

  • Proceedings/Recueil des communications

    Julien Rauch, Damien Rontani, Stéphane Vialle. Generative-Based Algorithm for Data Clustering on Hybrid Classical-Quantum NISQ Architecture. Architecture of Computing Systems, 37th International Conference, ARCS 2024, Potsdam, Germany, May 14–16, 2024, Proceedings, 14842, Springer Nature Switzerland, pp.282-297, 2024, Lecture Notes in Computer Science, 978-3-031-66146-4. ⟨10.1007/978-3-031-66146-4_19⟩. ⟨hal-04676136⟩

    ParSys

    Year of publication

  • Communication dans un congrès

    Hugo Gabrielidis, Filippo Gatti, Stéphane Vialle. Génération conditionelle et inconditionelle de signaux sismiques à l’aide de modèles de diffusion. 16ème Colloque National en Calcul de Structures, CNRS, CSMA, ENS Paris-Saclay, CentraleSupélec, May 2024, Giens, France. ⟨hal-04610943⟩

    ParSys

    Year of publication

  • Communication dans un congrès, Communication dans un congrès

    Jérémy Fix, Stéphane Vialle, Remi Hellequin, Claudine Mercier, Patrick Mercier, et al.. Feedback from a data center for education at CentraleSupélec engineering school. 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2022, LYON (Université Lyon 3), France. pp.330-337, ⟨10.1109/IPDPSW55747.2022.00065⟩. ⟨hal-04556247⟩

    ParSys

    Year of publication

  • Pré-publication, Document de travail

    Sylvain Chevallier, Igor Carrara, Bruno Aristimunha, Pierre Guetschel, Sara Sedlar, et al.. The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark. 2024. ⟨hal-04537061⟩

    AO, AO, ParSys

    Year of publication

    Available in free access

  • Poster de conférence

    Filippo Gatti, Fanny Lehmann, Hugo Gabrielidis, Michaël Bertin, Didier Clouteau, et al.. Deep learning generative strategies to enhance 3D physics-based seismic wave propagation: from diffusive super-resolution to 3D Fourier Neural Operators.. European Geophysical Union General Assembly 2024, Apr 2024, Vienne, Austria. 2024, ⟨10.5194/egusphere-egu24-2443⟩. ⟨hal-04534286⟩

    ParSys

    Year of publication

  • Communication dans un congrès

    Hugo Gabrielidis, Filippo Gatti, Stéphane Vialle, Gottfried Jacquet. Génération conditionnelle et inconditionnelle de signaux sismiques à l’aide de modèles de diffusion.. CSMA 2024 16ème Colloque National en Calcul des Structures, Association Calcul des Structures et Modélisation (CSMA), May 2024, Presqu’île de Giens (Var) Giens (Var), France. ⟨hal-04531795v2⟩

    ParSys

    Year of publication

    Available in free access

  • Pré-publication, Document de travail

    Marc Baboulin, Simplice Donfack, Oguz Kaya, Theo Mary, Matthieu Robeyns. Mixed precision randomized low-rank approximation with GPU tensor cores. 2024. ⟨hal-04520893v2⟩

    ParSys

    Year of publication

    Available in free access

  • Article dans une revue

    Christine Eisenbeis, Maxence Guesdon. Syndicalisme et numérisation, association ou dissociation ?. Les Cahiers de l’atelier, 2018. ⟨hal-01963096⟩

    ParSys

    Year of publication

    Available in free access

  • Article dans une revue

    Christine Castejon, Christine Eisenbeis. « Sur la santé au travail nous ne renoncerons pas ! ». Regards Croisés. Revue franco-allemande d’histoire de l’art et d’esthétique, 2018, dossier “Santé au travail, l’activité en question”, 27, pp 29–31. ⟨hal-01963134⟩

    ParSys

    Year of publication

    Available in free access

  • Autre publication scientifique

    Christine Eisenbeis, Hélène Gispert. Quand le temps nous manque : le droit au refus. Mensuel du Snesup, 2019, pp.1. ⟨hal-02427530⟩

    ParSys

    Year of publication