ParSys

Parallel Systems- ParSys

The ParSys team is specialized in high performance computing and the theoretical and implementation aspects of distributed algorithms.

Research Themes

The team’s activity also involves the use of state-of-the-art parallel architectures to achieve optimal performance of codes developed for future exascale platforms. In addition, drawing inspiration from natural, efficient and robust phenomena, the team studies natural distributed algorithms to design efficient solutions for emerging networks, and even to develop robust distributed circuits in bacterial cell consortia, for computational or medical purposes (biological computers, smart drugs, etc.).
The main challenges concerning the algorithms studied in the ParSys team are: performance optimization, scaling and load balancing, fault tolerance and energy saving.
The applications (ranging from scientific computing, quantum computing and data analysis to network protocols and microbiological circuits) meet essential industrial or scientific needs and are the subject of industrial cooperation with ATOS-Bull, Total, and EdF, among others.

Coordination

Last publications

  • Communication dans un congrès

    Pierre Fraigniaud, Minh Hang Nguyen, AmiArchitectures et modèles pour l'Interaction Paz. Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure. 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025), Mar 2025, Jena, Germany. ⟨10.4230/LIPIcs.STACS.2025.34⟩. ⟨hal-05249104⟩

    ParSys

    Year of publication

    Available in free access

  • Communication dans un congrès

    Atte Torri, Przemysław Dominikowski, Brice Pointal, Oguz Kaya, Laércio Lima Pilla, et al.. Near-Optimal Contraction Strategies for the Scalar Product in the Tensor-Train Format. Euro-Par 2025 – 31 International European Conference on Parallel and Distributed Computing, Aug 2025, Dresden, Germany. pp.63-77, ⟨10.1007/978-3-031-99872-0_5⟩. ⟨hal-05285400⟩

    ParSys

    Year of publication

    Available in free access

  • Proceedings/Recueil des communications

    Quentin Delamea, Janna Burman, Jerome Gurhem, Mohamed Khairallah, Wilfried Kirschenmann, et al.. Cloud-Agnostic Serverless Platform for Fault-Tolerant Execution of Dynamic Task Graphs. 2025 IEEE Cloud Summit, Jun 2025, Washington DC, United States. IEEE, pp.39-45, 2025, ⟨10.1109/Cloud-Summit64795.2025.00014⟩. ⟨hal-05265233⟩

    ParSys

    Year of publication

  • Article dans une revue

    Amanda Pelegrin Candemil, Hugo Gabrielidis, Filippo Gatti, Benjamin Salmon, Matheus Oliveira, et al.. Diagnostic performance of artefact-reduced cone-beam CT images using a generative adversarial neural network. Expert Systems with Applications, In press, 296 (Part B), pp.128907. ⟨10.1016/j.eswa.2025.128907⟩. ⟨hal-05157692⟩

    ParSys

    Year of publication

  • Article dans une revue

    Pierre Fraigniaud, AmiArchitectures et modèles pour l'Interaction Paz, Sergio Rajsbaum. A speedup theorem for asynchronous computation with applications to consensus and approximate agreement. Distributed Computing, 2025, 38, pp.163-183. ⟨10.1007/s00446-025-00480-0⟩. ⟨hal-05114147⟩

    ParSys

    Year of publication

    Available in free access

  • Pré-publication, Document de travail

    Gabrielidis Hugo, Filippo Gatti, Vialle Stephane. Physics-Based Super-Resolved Simulation of 3D Elastic Wave Propagation Adopting Scalable Diffusion Transformer. 2025. ⟨hal-05044913⟩

    ParSys

    Year of publication

    Available in free access

  • Article dans une revue, Article dans une revue

    Julien Rauch, Damien Rontani, Stéphane Vialle. Data clustering on hybrid classical-quantum NISQ architecture with generative-based variational and parallel algorithms. Journal of Systems Architecture, In press, Special Issue on Architecture of Computing Systems Conference 2024, 165, pp.103431. ⟨10.1016/j.sysarc.2025.103431⟩. ⟨hal-05040633⟩

    ParSys

    Year of publication

  • Article dans une revue, Article dans une revue

    Guanlin He, Stéphane Vialle, Marc Baboulin. Generating Sparse Matrices for Large-scale Spectral Clustering on a Single GPU. International Journal of Parallel Programming, In press, 53 (4), pp.22. ⟨10.1007/s10766-025-00799-y⟩. ⟨hal-05040711⟩

    ParSys

    Year of publication

  • Pré-publication, Document de travail

    Niccolò Perrone, Fanny Lehmann, Hugo Gabrielidis, Stefania Fresca, Filippo Gatti. Integrating Fourier Neural Operators with Diffusion Models to improve Spectral Representation of Synthetic Earthquake Ground Motion Response. 2025. ⟨hal-05016980⟩

    ParSys

    Year of publication

    Available in free access

  • Thèse

    Fabricio Cravo. Design of Distributed Biological Circuits. Bioinformatics [q-bio.QM]. Université Paris-Saclay, 2024. English. ⟨NNT : 2024UPASG059⟩. ⟨tel-05007253⟩

    ParSys

    Year of publication

    Available in free access