The ParSys team is specialized in high performance computing and the theoretical and implementation aspects of distributed algorithms.
Research Themes
The team’s activity also involves the use of state-of-the-art parallel architectures to achieve optimal performance of codes developed for future exascale platforms. In addition, drawing inspiration from natural, efficient and robust phenomena, the team studies natural distributed algorithms to design efficient solutions for emerging networks, and even to develop robust distributed circuits in bacterial cell consortia, for computational or medical purposes (biological computers, smart drugs, etc.). The main challenges concerning the algorithms studied in the ParSys team are: performance optimization, scaling and load balancing, fault tolerance and energy saving. The applications (ranging from scientific computing, quantum computing and data analysis to network protocols and microbiological circuits) meet essential industrial or scientific needs and are the subject of industrial cooperation with ATOS-Bull, Total, and EdF, among others.
Hugo Gabrielidis, Filippo Gatti, Stéphane Vialle. Génération conditionelle et inconditionelle de signaux sismiques à l’aide de modèles de diffusion. 16ème Colloque National en Calcul de Structures, CNRS, CSMA, ENS Paris-Saclay, CentraleSupélec, May 2024, Giens, France. ⟨hal-04610943⟩
Communication dans un congrès, Communication dans un congrès
Jérémy Fix, Stéphane Vialle, Remi Hellequin, Claudine Mercier, Patrick Mercier, et al.. Feedback from a data center for education at CentraleSupélec engineering school. 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2022, LYON (Université Lyon 3), France. pp.330-337, ⟨10.1109/IPDPSW55747.2022.00065⟩. ⟨hal-04556247⟩
Sylvain Chevallier, Igor Carrara, Bruno Aristimunha, Pierre Guetschel, Sara Sedlar, et al.. The largest EEG-based BCI reproducibility study for open science: the MOABB benchmark. 2024. ⟨hal-04537061⟩
Filippo Gatti, Fanny Lehmann, Hugo Gabrielidis, Michaël Bertin, Didier Clouteau, et al.. Deep learning generative strategies to enhance 3D physics-based seismic wave propagation: from diffusive super-resolution to 3D Fourier Neural Operators.. European Geophysical Union General Assembly 2024, Apr 2024, Vienne, Austria. 2024, ⟨10.5194/egusphere-egu24-2443⟩. ⟨hal-04534286⟩
Hugo Gabrielidis, Filippo Gatti, Stéphane Vialle, Gottfried Jacquet. Génération conditionnelle et inconditionnelle de signaux sismiques à l’aide de modèles de diffusion.. CSMA 2024 16ème Colloque National en Calcul des Structures, Association Calcul des Structures et Modélisation (CSMA), May 2024, Presqu’île de Giens (Var) Giens (Var), France. ⟨hal-04531795v2⟩
Christine Castejon, Christine Eisenbeis. « Sur la santé au travail nous ne renoncerons pas ! ». Regards Croisés. Revue franco-allemande d’histoire de l’art et d’esthétique, 2018, dossier “Santé au travail, l’activité en question”, 27, pp 29–31. ⟨hal-01963134⟩