Communication dans un congrès, AO, Calcul parallèle, distribué et partagé, Informatique
Adversarial learning to eliminate systematic errors: a case study in High Energy Physics
Victor Estrade, Cécile Germain, Isabelle Guyon, David Rousseau. Adversarial learning to eliminate systematic errors: a case study in High Energy Physics. NIPS 2017 - workshop Deep Learning for Physical Sciences, Dec 2017, Long Beach, United States. pp.1-5. ⟨hal-01665925⟩